Simplification

Only available for you

Algebraic formulas:

  • (a+b)2 = a2 + b2 + 2ab
  • (a-b)2 = a2 + b2 – 2ab
  • (a+b) (a-b) = a2 – b2
  • (a + b)3 = a3 + b3 + 3ab(a + b)
  • (a – b)3 = a3 – b3 – 3ab(a – b)
  • a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc -ac)
  • a2 + b2 =½ [(a + b)2 + (a – b)2]
  • (a + a) (a + b) (a + c) = a3 + (a + b +c)a2 + (ab + bc + ca)a + abc
  • a3 + b3= (a + b) (a2 – ab + b2)
  • a3 – b3 = (a – b) (a2 + ab + b2)
  • a2 + b2 + c2 -ab – bc – ca = ½ [(a-b)2 + (b-c)2 + (c-a)2]

1 (98764 + 89881 + 99763 + 66342) ÷ (1186 + ? + 1040 + 1870) = 55

A
2254
B
2354
C
2368
D
2404

2 Simplify : $$\frac{{\frac{5}{3} \times \frac{7}{{51}}{\text{ of }}\frac{17}{5} - \frac{1}{3}}}{{\frac{2}{9} \times \frac{5}{7}{\text{ of }}\frac{{28}}{5} - \frac{2}{3}}}\  \  = ?$$

A
$$\frac{1}{3}$$
B
$$\frac{1}{6}$$
C
4
D
2

3 $$853 + ? \div 17 = 1000$$

A
2482
B
2499
C
2516
D
16147

4 $$\left( {? - 968} \right) \div 79 \times 4 = 512$$

A
10185
B
10190
C
11075
D
11080

5 Simplify : $$1 - \left[ {1 - \left\{ {1 - \left( {1 - \overline {1 - 1} } \right)} \right\}} \right]$$

A
0
B
1
C
2
D
3

6 Simplify : $${{{5 \over 3} \times {7 \over {51}}{\text{ of }}{{17} \over 5} - {1 \over 3}} \over {{2 \over 9} \times {5 \over 7}{\text{ of }}{{28} \over 5} - {2 \over 3}}}$$

A
$$\frac{1}{2}$$
B
4
C
2
D
$$\frac{1}{4}$$

7 1 - [5 - {2 + (- 5 + 6 - 2) 2}] is equal to:

A
-4
B
2
C
0
D
2

8 Assume that $$\sqrt {13} $$ = 3.605(approximately) and $$\sqrt {130} $$  = 11.40(approximately) Find the value of: $$\sqrt {1.3}$$  $$+$$ $$\sqrt {1300}$$   $$+$$ $$\sqrt {0.013} $$

A
36.164
B
36.304
C
37.304
D
37.164

9 $$1888 \div 32 \div 8 = ?$$

A
7.375
B
9.485
C
29.5
D
472

10 $$4848 \div 24 \times 11 - 222 = ?$$

A
200
B
2444
C
2000
D
$$115\frac{3}{8}$$