Trigonometry

Only available for you

Trigonometry Table:

Angle 30° 45° 60° 90°
Sinθ 0 $$\frac{1}{2}$$ 1/√2 √3/2 1
Cosθ 1 √3/2 1/√2 ½ 0
Tanθ 0 1/√3 1 √3 Undefined
Cotθ Undefined √3 1 1/√3 0
Secθ 1 2/√3 √2 2 Undefined
Cosecθ Undefined 2 √2 2/√3 1

Trigonometric formulas:

  • sin(90° – θ) = cos θ
  • cos(90° – θ) = sin θ
  • tan(90° – θ) = cot θ
  • cot(90° – θ) = tan θ
  • sec(90° – θ) = cosecθ
  • cosec(90° – θ) = secθ
  • sin2θ + cos2 θ = 1
  • sec2 θ = 1 + tan2θ for 0° ≤ θ < 90°
  • Cosec2 θ = 1 + cot2 θ for 0° ≤ θ ≤ 90°

Trigonometric Formula

\(\sin (-\theta ) = -\sin \theta\) \(\cos (-\theta ) = \cos \theta\)
\(\tan (-\theta ) = -\tan \theta\) \(\cot (-\theta ) = -\cot \theta\)
\(\sec (-\theta ) = \sec \theta\) \( cosec (-\theta ) = -cosec \theta\)
\(\sin \, A \,\ sin \, B = \frac{1}{2}\left [ \cos\left ( A – B \right ) -\cos \left ( A+B \right ) \right ]\)
\(\cos\, A \, \cos\, B = \frac{1}{2}\left [ \cos \left ( A – B \right ) + \cos \left ( A+B \right ) \right ]\)
\(\sin\, A \, \cos\, B = \frac{1}{2}\left [ \sin\left ( A + B \right ) + \sin \left ( A-B \right ) \right ]\)
\( \cos\, A \, \sin\, B = \frac{1}{2}\left [ \sin\left ( A + B \right ) – \sin\left ( A-B \right ) \right ]\)

1 If 1/(tanA + cotA) = x, then value of x is

A
cosAsinA
B
cos²Asin²A
C
cosecAsecA
D
cosec2Asec2A

2 If cos20° = m and cos70° =n, then the value of m2 + n2 is?

A
$$\frac{1}{2}$$
B
1
C
$$\frac{3}{2}$$
D
$$\frac{1}{{\sqrt 2 }}$$

3 If (1 + cosA)/(1 - cosA) = x, then x is

A
cot2A/(secA - 1)2
B
cot2A/(secA + 1)2
C
tan2A/(secA + 1)2
D
tan2A/(secA - 1)2

4 What is the value of sin(11π/6)?

A
2/√3
B
-2/√3
C
-$$\frac{1}{2}$$
D
$$\frac{1}{2}$$

5 The minimum value of 2sin2θ + 3cos2θ is ?

A
0
B
3
C
2
D
1

6 If cosec 45° - sin 30° = x, then x is

A
5/√3
B
(√6-1)/√2
C
√3+2
D
(2√2-1)/2

7 If sinC - sinD = x, then value of x is

A
2sin[(C+D)/2]cos[(C-D)/2]
B
2cos[(C+D)/2]cos[(C-D)/2]
C
2cos[(C+D)/2]sin[(C-D)/2]
D
2sin[(C+D)/2]sin[(D-C)/2]

8 Sin2014x + Cos2014x = 1, x in the range of [-5π, 5π], how many values can x take?

A
0
B
10
C
21
D
11

9 3sinx + 4cosx + r is always greater than or equal to 0. What is the smallest value ‘r’ can to take?

A
5
B
-5
C
4
D
3

10 If θ be an acute angle and 7sin2θ + 3cos2θ = 4, then the value of tanθ is?

A
$$\sqrt 3 $$
B
$$\frac{1}{{\sqrt 3 }}$$
C
1
D
0